Code for quiz 05. More practice with dplyer functions.
drug_cos.csv
into R and assign it to drug_cos
drug_cos <- read_csv("https://estanny.com/static/week5/drug_cos.csv")
glimpse()
to get a glimpse of your dataglimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
#Which company is the most profitable?
#net margin = net income / revenue (after expense are covered)
#gross margin = gross profit(rev - cost of rev) / revenue #measuring % of dollar left over after cost of rev is covered
#IS = earnings before interest and tax / revenue; return on sale, operating profit margin,
#earnings biat = net incomme + interest and tax earnings is net income
#return on equity = measure financial peformance. Net income / shareholders equity
distinct()
to subset distinct rows.drug_cos %>%
distinct(year)
# A tibble: 8 x 1
year
<dbl>
1 2011
2 2012
3 2013
4 2014
5 2015
6 2016
7 2017
8 2018
count()
to count observations by group.drug_cos %>%
count(year)
# A tibble: 8 x 2
year n
* <dbl> <int>
1 2011 13
2 2012 13
3 2013 13
4 2014 13
5 2015 13
6 2016 13
7 2017 13
8 2018 13
drug_cos %>%
count(name)
# A tibble: 13 x 2
name n
* <chr> <int>
1 AbbVie Inc 8
2 Allergan plc 8
3 Amgen Inc 8
4 Biogen Inc 8
5 Bristol Myers Squibb Co 8
6 ELI LILLY & Co 8
7 Gilead Sciences Inc 8
8 Johnson & Johnson 8
9 Merck & Co Inc 8
10 Mylan NV 8
11 PERRIGO Co plc 8
12 Pfizer Inc 8
13 Zoetis Inc 8
drug_cos %>%
count(ticker, name)
# A tibble: 13 x 3
ticker name n
<chr> <chr> <int>
1 ABBV AbbVie Inc 8
2 AGN Allergan plc 8
3 AMGN Amgen Inc 8
4 BIIB Biogen Inc 8
5 BMY Bristol Myers Squibb Co 8
6 GILD Gilead Sciences Inc 8
7 JNJ Johnson & Johnson 8
8 LLY ELI LILLY & Co 8
9 MRK Merck & Co Inc 8
10 MYL Mylan NV 8
11 PFE Pfizer Inc 8
12 PRGO PERRIGO Co plc 8
13 ZTS Zoetis Inc 8
#use filter()
to extract rows that meet criteria
# A tibble: 26 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… New Jer… 0.222 0.634 0.111 0.176
2 ZTS Zoet… New Jer… 0.379 0.672 0.245 0.326
3 PRGO PERR… Ireland 0.236 0.362 0.125 0.19
4 PRGO PERR… Ireland 0.178 0.387 0.028 0.088
5 PFE Pfiz… New Yor… 0.634 0.814 0.427 0.51
6 PFE Pfiz… New Yor… 0.34 0.79 0.208 0.221
7 MYL Myla… United … 0.228 0.44 0.09 0.153
8 MYL Myla… United … 0.258 0.35 0.031 0.074
9 MRK Merc… New Jer… 0.282 0.615 0.1 0.123
10 MRK Merc… New Jer… 0.313 0.681 0.147 0.206
# … with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 52 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… New Jer… 0.217 0.64 0.101 0.171
2 ZTS Zoet… New Jer… 0.238 0.641 0.122 0.195
3 ZTS Zoet… New Jer… 0.335 0.659 0.168 0.286
4 ZTS Zoet… New Jer… 0.379 0.672 0.245 0.326
5 PRGO PERR… Ireland 0.226 0.345 0.127 0.183
6 PRGO PERR… Ireland 0.157 0.371 0.059 0.104
7 PRGO PERR… Ireland -0.791 0.389 -0.76 -0.877
8 PRGO PERR… Ireland 0.178 0.387 0.028 0.088
9 PFE Pfiz… New Yor… 0.447 0.82 0.267 0.307
10 PFE Pfiz… New Yor… 0.359 0.807 0.184 0.247
# … with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 16 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 PFE Pfiz… New Yor… 0.371 0.795 0.164 0.223
2 PFE Pfiz… New Yor… 0.447 0.82 0.267 0.307
3 PFE Pfiz… New Yor… 0.634 0.814 0.427 0.51
4 PFE Pfiz… New Yor… 0.359 0.807 0.184 0.247
5 PFE Pfiz… New Yor… 0.289 0.803 0.142 0.183
6 PFE Pfiz… New Yor… 0.267 0.767 0.137 0.158
7 PFE Pfiz… New Yor… 0.353 0.786 0.406 0.233
8 PFE Pfiz… New Yor… 0.34 0.79 0.208 0.221
9 MYL Myla… United … 0.245 0.418 0.088 0.161
10 MYL Myla… United … 0.244 0.428 0.094 0.163
11 MYL Myla… United … 0.228 0.44 0.09 0.153
12 MYL Myla… United … 0.242 0.457 0.12 0.169
13 MYL Myla… United … 0.243 0.447 0.09 0.133
14 MYL Myla… United … 0.19 0.424 0.043 0.052
15 MYL Myla… United … 0.272 0.402 0.058 0.121
16 MYL Myla… United … 0.258 0.35 0.031 0.074
# … with 2 more variables: roe <dbl>, year <dbl>
#Use select()
to select, rename and reorder columns.
tikcer
, name
, ros
.drug_cos %>%
select(ticker, name, ros)
# A tibble: 104 x 3
ticker name ros
<chr> <chr> <dbl>
1 ZTS Zoetis Inc 0.101
2 ZTS Zoetis Inc 0.171
3 ZTS Zoetis Inc 0.176
4 ZTS Zoetis Inc 0.195
5 ZTS Zoetis Inc 0.14
6 ZTS Zoetis Inc 0.286
7 ZTS Zoetis Inc 0.321
8 ZTS Zoetis Inc 0.326
9 PRGO PERRIGO Co plc 0.178
10 PRGO PERRIGO Co plc 0.183
# … with 94 more rows
select
to exclude columns ticker
, name
and ros
#-variable is variable we don’t want to includedrug_cos %>%
select(-ticker, -name, -ros)
# A tibble: 104 x 6
location ebitdamargin grossmargin netmargin roe year
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 New Jersey; U.S.A 0.149 0.61 0.058 0.069 2011
2 New Jersey; U.S.A 0.217 0.64 0.101 0.113 2012
3 New Jersey; U.S.A 0.222 0.634 0.111 0.612 2013
4 New Jersey; U.S.A 0.238 0.641 0.122 0.465 2014
5 New Jersey; U.S.A 0.182 0.635 0.071 0.285 2015
6 New Jersey; U.S.A 0.335 0.659 0.168 0.587 2016
7 New Jersey; U.S.A 0.366 0.666 0.163 0.488 2017
8 New Jersey; U.S.A 0.379 0.672 0.245 0.694 2018
9 Ireland 0.216 0.343 0.123 0.248 2011
10 Ireland 0.226 0.345 0.127 0.236 2012
# … with 94 more rows
select()
start with drug_cos
then
change the name of location
to headquarter
put the columns in this order: year
, ticker
, headquarter
, netmargin
, roe
drug_cos %>%
select(year, ticker, headquarter =location, netmargin, roe)
# A tibble: 104 x 5
year ticker headquarter netmargin roe
<dbl> <chr> <chr> <dbl> <dbl>
1 2011 ZTS New Jersey; U.S.A 0.058 0.069
2 2012 ZTS New Jersey; U.S.A 0.101 0.113
3 2013 ZTS New Jersey; U.S.A 0.111 0.612
4 2014 ZTS New Jersey; U.S.A 0.122 0.465
5 2015 ZTS New Jersey; U.S.A 0.071 0.285
6 2016 ZTS New Jersey; U.S.A 0.168 0.587
7 2017 ZTS New Jersey; U.S.A 0.163 0.488
8 2018 ZTS New Jersey; U.S.A 0.245 0.694
9 2011 PRGO Ireland 0.123 0.248
10 2012 PRGO Ireland 0.127 0.236
# … with 94 more rows
#Quiz filter and select
# A tibble: 24 x 3
ticker year ebitdamargin
<chr> <dbl> <dbl>
1 PFE 2011 0.371
2 PFE 2012 0.447
3 PFE 2013 0.634
4 PFE 2014 0.359
5 PFE 2015 0.289
6 PFE 2016 0.267
7 PFE 2017 0.353
8 PFE 2018 0.34
9 MYL 2011 0.245
10 MYL 2012 0.244
# … with 14 more rows
select
ranges of columnsby name #like excel
drug_cos %>%
select(ebitdamargin:netmargin)
# A tibble: 104 x 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# … with 94 more rows
by position
drug_cos %>%
select(4:6)
# A tibble: 104 x 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# … with 94 more rows
select()
helper functionsstarts_with("abc")
matches columns starting with “abc”
ends_with("abc")
matches columns ending with “abc”
contains("abc")
matches columns containing “abc”
drug_cos %>%
select(ticker, contains("locat"))
# A tibble: 104 x 2
ticker location
<chr> <chr>
1 ZTS New Jersey; U.S.A
2 ZTS New Jersey; U.S.A
3 ZTS New Jersey; U.S.A
4 ZTS New Jersey; U.S.A
5 ZTS New Jersey; U.S.A
6 ZTS New Jersey; U.S.A
7 ZTS New Jersey; U.S.A
8 ZTS New Jersey; U.S.A
9 PRGO Ireland
10 PRGO Ireland
# … with 94 more rows
drug_cos %>%
select(ticker, starts_with("r"))
# A tibble: 104 x 3
ticker ros roe
<chr> <dbl> <dbl>
1 ZTS 0.101 0.069
2 ZTS 0.171 0.113
3 ZTS 0.176 0.612
4 ZTS 0.195 0.465
5 ZTS 0.14 0.285
6 ZTS 0.286 0.587
7 ZTS 0.321 0.488
8 ZTS 0.326 0.694
9 PRGO 0.178 0.248
10 PRGO 0.183 0.236
# … with 94 more rows
drug_cos %>%
select(year, ends_with("margin"))
# A tibble: 104 x 4
year ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl> <dbl>
1 2011 0.149 0.61 0.058
2 2012 0.217 0.64 0.101
3 2013 0.222 0.634 0.111
4 2014 0.238 0.641 0.122
5 2015 0.182 0.635 0.071
6 2016 0.335 0.659 0.168
7 2017 0.366 0.666 0.163
8 2018 0.379 0.672 0.245
9 2011 0.216 0.343 0.123
10 2012 0.226 0.345 0.127
# … with 94 more rows
#Use group_by
to set up data for operations by group
group_by
drug_cos %>%
group_by(ticker)
# A tibble: 104 x 9
# Groups: ticker [13]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… New Jer… 0.149 0.61 0.058 0.101
2 ZTS Zoet… New Jer… 0.217 0.64 0.101 0.171
3 ZTS Zoet… New Jer… 0.222 0.634 0.111 0.176
4 ZTS Zoet… New Jer… 0.238 0.641 0.122 0.195
5 ZTS Zoet… New Jer… 0.182 0.635 0.071 0.14
6 ZTS Zoet… New Jer… 0.335 0.659 0.168 0.286
7 ZTS Zoet… New Jer… 0.366 0.666 0.163 0.321
8 ZTS Zoet… New Jer… 0.379 0.672 0.245 0.326
9 PRGO PERR… Ireland 0.216 0.343 0.123 0.178
10 PRGO PERR… Ireland 0.226 0.345 0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
drug_cos %>%
group_by(year)
# A tibble: 104 x 9
# Groups: year [8]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… New Jer… 0.149 0.61 0.058 0.101
2 ZTS Zoet… New Jer… 0.217 0.64 0.101 0.171
3 ZTS Zoet… New Jer… 0.222 0.634 0.111 0.176
4 ZTS Zoet… New Jer… 0.238 0.641 0.122 0.195
5 ZTS Zoet… New Jer… 0.182 0.635 0.071 0.14
6 ZTS Zoet… New Jer… 0.335 0.659 0.168 0.286
7 ZTS Zoet… New Jer… 0.366 0.666 0.163 0.321
8 ZTS Zoet… New Jer… 0.379 0.672 0.245 0.326
9 PRGO PERR… Ireland 0.216 0.343 0.123 0.178
10 PRGO PERR… Ireland 0.226 0.345 0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
roe
for all companiesdrug_cos %>%
summarize(max_roe = max(roe))
# A tibble: 1 x 1
max_roe
<dbl>
1 1.31
maximum roe
for each year
drug_cos %>%
group_by(year) %>%
summarize(max_roe = max(roe))
# A tibble: 8 x 2
year max_roe
* <dbl> <dbl>
1 2011 0.451
2 2012 0.69
3 2013 1.13
4 2014 0.828
5 2015 1.31
6 2016 1.11
7 2017 0.932
8 2018 0.694
maximum roe
for each ticker
drug_cos %>%
group_by(ticker)%>%
summarize(max_roe = max(roe))
# A tibble: 13 x 2
ticker max_roe
* <chr> <dbl>
1 ABBV 1.31
2 AGN 0.184
3 AMGN 0.585
4 BIIB 0.334
5 BMY 0.373
6 GILD 1.04
7 JNJ 0.244
8 LLY 0.306
9 MRK 0.248
10 MYL 0.283
11 PFE 0.342
12 PRGO 0.248
13 ZTS 0.694
#Quiz question summarize Mean for year Find the mean SEEQUIZ for each year
and call the variable mean_SEE QUIZ Extract the mean for SEEQUIZ
# A tibble: 1 x 2
year mean_ros
<dbl> <dbl>
1 2012 0.234
Median for year *Find the median SEEQUIZ for each year
and call variable median_SEEQUIZ
# A tibble: 1 x 2
year median_ros
<dbl> <dbl>
1 2012 0.218
16. Pick a ratio and a year and compare the companies.
<div class="layout-chunk" data-layout="l-body">
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class='va'>drug_cos</span> <span class='op'>%>%</span>
<span class='fu'><a href='https://rdrr.io/r/stats/filter.html'>filter</a></span><span class='op'>(</span><span class='va'>year</span> <span class='op'>==</span> <span class='fl'>2018</span><span class='op'>)</span> <span class='op'>%>%</span>
<span class='fu'>ggplot</span><span class='op'>(</span><span class='fu'>aes</span><span class='op'>(</span>x <span class='op'>=</span> <span class='va'>netmargin</span>, y <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/stats/reorder.factor.html'>reorder</a></span><span class='op'>(</span><span class='va'>name</span>, <span class='va'>netmargin</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>geom_col</span><span class='op'>(</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>scale_x_continuous</span><span class='op'>(</span>labels <span class='op'>=</span> <span class='fu'>scales</span><span class='fu'>::</span><span class='va'><a href='https://scales.r-lib.org//reference/label_percent.html'>percent</a></span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>labs</span><span class='op'>(</span>title <span class='op'>=</span> <span class='st'>"Comparison of net margin"</span>,
subtitle <span class='op'>=</span> <span class='st'>"for drug companies during 2018"</span>,
x <span class='op'>=</span> <span class='cn'>NULL</span>, y <span class='op'>=</span> <span class='cn'>NULL</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>theme_classic</span><span class='op'>(</span><span class='op'>)</span>
</code></pre></div>
<img src="data-manipulation_files/figure-html5/unnamed-chunk-22-1.png" width="624" />
</div>
17. Pick a company and a ratio and compare ratio over time.
<div class="layout-chunk" data-layout="l-body">
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class='va'>drug_cos</span> <span class='op'>%>%</span>
<span class='fu'><a href='https://rdrr.io/r/stats/filter.html'>filter</a></span><span class='op'>(</span><span class='va'>ticker</span> <span class='op'>==</span> <span class='st'>"PFE"</span><span class='op'>)</span> <span class='op'>%>%</span>
<span class='fu'>ggplot</span><span class='op'>(</span><span class='fu'>aes</span><span class='op'>(</span>x <span class='op'>=</span> <span class='va'>year</span>, y <span class='op'>=</span> <span class='va'>netmargin</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>geom_col</span><span class='op'>(</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>scale_y_continuous</span><span class='op'>(</span>labels <span class='op'>=</span> <span class='fu'>scales</span><span class='fu'>::</span><span class='va'><a href='https://scales.r-lib.org//reference/label_percent.html'>percent</a></span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>labs</span><span class='op'>(</span>title <span class='op'>=</span> <span class='st'>"Comparison of net margin"</span>,
subtitle <span class='op'>=</span> <span class='st'>"forPfizer from 2011 - 2018"</span>,
x <span class='op'>=</span> <span class='cn'>NULL</span>, y <span class='op'>=</span> <span class='cn'>NULL</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'>theme_classic</span><span class='op'>(</span><span class='op'>)</span>
</code></pre></div>
<img src="data-manipulation_files/figure-html5/unnamed-chunk-23-1.png" width="624" /><div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class='fu'>ggsave</span><span class='op'>(</span>filename <span class='op'>=</span> <span class='st'>"preview.png"</span>,
path <span class='op'>=</span> <span class='fu'>here</span><span class='fu'>::</span><span class='fu'><a href='https://here.r-lib.org//reference/here.html'>here</a></span><span class='op'>(</span><span class='st'>"_posts"</span>, <span class='st'>"2021-03-08-data-manipulation"</span><span class='op'>)</span><span class='op'>)</span>
</code></pre></div>
</div>
```{.r .distill-force-highlighting-css}